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Turing Computation

• The dominant model of computation is that 
proposed by Turing and Church

• “a problem can be solved by an algorithm 
iff it can be solved by a Turing Machine”
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Who or what 

writes the 

program?

Where is the 

physics?



Evolved machines versus Turing 

machines

• Natural evolution has created biological 

“machines” that can invent Turing machines and 

solve many computational problems

• Artificial evolution is a type of program running 

on a Turing machine

– But Turing machines do not use physics, they are 

symbolic machines

– This means artificial evolution does not have access 

to the physics of the real world. Does it have to be like 

this?

3



4

Some dangers of conventional 

programming…

• “In conventional design the vast majority of 
interactions that could possibly contribute to the 
problem are deliberately excluded” (Michael 
Conrad 1988)

• “Get a computer to do what needs to be done, 
without telling it how to do it” (Arthur Samuel 
1983)

• “Nothing makes sense in computing except in 
the light of evolution” (Toffoli 2005) 



What is the computational power of 

matter?

• Seth Lloyd has calculated the potential 
amount of computation possible in matter. 
He calculated:

– 1Kg of matter should be able to carry out 

about 5.5x1050 operations per second and 

store 1031 bits.

• Shouldn’t we be trying to directly exploit 
matter for computation?

• Lloyd S (2000) Ultimate physical limits to computation. Nature 406:1047–1054 5



Evolution-in-materio

• Natural evolution has been exploiting the 

physical properties of materials (i.e. proteins) for 

billions of year

• Evolution-in-materio aims to allow artificial 

evolution to exploit the properties of materials to 

solve problems (particularly computational)
– One of the potential advantages of this is that artificial evolution 

can potentially exploit physical effects that are either too 
complex to understand or hitherto unknown.

– Exploiting the richness of the physical world ought to make it 
easier to evolve solutions than in simulation
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Getting matter to compute



One way to do evolution-in-

materio
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Evolution-in-materio: a brief history

Name Year Material

Pask 1958 Ferrous sulphate

Mills 1995 Conducting polymer

Thompson 1996 Silicon (FPGA)

Huelsbergen et 

al.

1998 Silicon (FPGA)

Layzell 1998 Silicon (Switch array)

Stoica et al. 2000 Silicon (Transistor array)

Langeheine et al. 2000 Silicon (custom FPGA)

Linden 2001 Metal (Reed-switch array)

Harding & Miller 2004 Liquid Crystal (with Switch array)

NASCENCE 2013 SWNT-Polymer (with Switch array), Gold 

nanoparticles

For review: see Miller, Harding, Tufte, Evolutionary Intelligence 2014 



Recently attempted computational problems

Problem Number
of 
inputs

Number 
of outputs

Comments Status

Travelling 
Salesman

None Possibly many Classic NP complete problem 11 city solved
PPSN 2014

Tone 
Discriminator

Few, time 
dependent

Few Standard problem Frequency classifier
ICES 2014, SOC2015

Bin Packing None Possibly many Classic NP complete problem ICES 2014

Robot 
control

Medium Medium Needs simulated or real robot ECAL 2015

Classification Variable Variable Classic machine learning 
benchmark

UCI standard problems 
Lenses/IRIS 
PPSN 2014, UC journal

Function 
optimization

None Many Classic EC problem UKCI 2014, SOC2015

Logic gates Variable Variable Commonly studied UCNC 2014
UC journal (threshold logic 
gates) Nature Nanotech 
2015

3 and 4 parity 3 or 4 one Genetic programming 
“benchmark”

UKCI 2015



Nanoparticle device (University of 
Twente)

• Operates with gold 

nanoparticles

• Low temperature (< 

1K)

• Nanoparticles act as 

single-electron 

transistors

• Applied voltages 

enable single electron 

tunneling

“One electron at a time can tunnel when sufficient

energy is available (ON state), either by applying a voltage 

across the SET or by electrostatically shifting its potential. 

Otherwise, the transport is blocked because of the Coulomb 

blockade (OFF state).” Bose at al. Nat. Nanotech. 2015



• Genotype data [millivolts]
– 6 configuration (inc. backgate)
– 2 electrodes used as inputs
– 1 electrode is output

• Inputs are applied as pulse sequences
• All two-input Boolean functions have been obtained

Two-input logic gates: Nanoparticles



Another computational device 
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• Twelve gold electrodes

• Single walled carbon nanotubes mixed with 

Polymethyl Methacralate (PMMA) in Anisole 

surfactant

• Mixed using ultrasonic homogeniser

• 20 µL is dropped onto a gold electrode array

• Sample is then baked to evaporate Anisole

Device 

designed and 

fabricated by 

M. K Massey 

and M. C. Petty

(Univ. of 

Durham)



NI DAQ  Experimental 
Setup (Univ. of York)

Matlab running on 
PC configures 

switch array and 
signals

DAQ card 
handles data 

acquisition and 
signal outputs

SCB-68 connection boards with 
16x16 analogue switch to route 

connections
Sample 
being 
tested



• Genotype defines:
– Configuration analogue voltages 
– Which electrodes will receive 

configuration voltages
– Which electrodes are used as output

• Number of outputs equals number of 

cities

• Output vector sorted to read off 

permutation (SPV representation)

Travelling Salesman: NI DAQ

0.2 -1.2 1.5 0.4 -2.3 0.7 1.6 -0.8 1.7 1.3

1 2 3 4 5 6 7 8 9 10

-2.3 -1.2 -0.8 0.2 0.4 0.7 1.3 1.5 1.6 1.7

5 2 8 1 4 6 10 3 7 9

Sort by first field



Solving 10 city TSP
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CGP vs SWCNT-PMMA

• The two evolutionary search algorithms are not exact 

correlates… 

– LHS: CGP evolved network of nodes and mathematical 
operators. 

– RHS: the SWCNT-PMMA material over an early 4x3 electrode. 

• Each method uses a complex network of nodes that 

transforms the inputs to solve a problem.
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TSP results: in material compared with 
software evolutionary technique CGP: PPSN 
paper
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Computation type 

(30 runs)

Size of TSP No. of 

configuration 

voltages

Average no. of 

generations for 

successful runs

Median no. of 

generations

Average % 

sample of 

solution space

SWCNT-PMMA 

substrate 
9 2 158.6 104.5 0.1751

9 3 57.36 42.5 0.0741

9 4 118.4 61.5 0.1308

10 2 157.95 155 0.0174

10 3 79.76 63.5 0.0086

10 4 68.03 46.5 0.0075

11 2 219.9 109 0.0022

11 3 88.9 58.5 0.0008

11 4 148.6 133.5 0.0015

Software (CGP  

encoding)
9 n/a 34.04 29.5 0.0378

10 n/a 48.96 40.5 0.0054

11 n/a 91.96 65.5 0.0009



Mecobo EIM platform (NTNU Norway)
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• A genome defines 

pin 2 to be the 

output terminal, pin 

1 to be the data 

input and pin 3 - 12 

to be configuration 

signals.

• Custom hardware 

designed and built 

by Gunnar Tufte

and Odd Rune 

Lykebbø at NTNU

• Connected material 

sample (right)



• Function optimisation consists of trying to find 

the minima of complex multi-modal functions

• Multiple chromosome (sequential)
– 11 config and one output

– Repeated until obtained number of outputs required by 

function optimization problem

– Very slow

• Genotype defines for each iteration:
– Which electrodes are used as output

– Whether an input will receive a constant input or 

square wave, amplitude of input (0 or 1), frequency, 

phase, and duty cycle

• Output is read from digital buffer from sample
– Mapping function written to convert to real-number

– Proportional to percentage ones in output buffer

– Linearly mapped to allowed ranges of domain 

variables

Function Optimization: Mecobo



Function optimization results: in materio
compared with CGP ( Maktuba et al. UKCI 
2014)
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• Suite of 23 multi-modal complex optimization 

functions
– 500 generations of 1+4-ES evolutionary algorithm
– 12/23 functions EIM gave average results very close 

to optimum
– 10/23 case average EIM results equal or are better 

than evolutionary software technique (CGP)



• Genotype
– 5 configuration 
– 4 electrodes used as inputs
– 3 electrodes are outputs (defining 

class)

• Genotype defines:
– Which electrodes are used as output
– Whether an input will receive a 

constant input or square wave, 
amplitude of input (0 or 1), frequency, 
phase, and duty cycle

• Output is read from digital buffer from 

sample
– Average transition gap between 0 and 

1 is computed
– Class decided by whichever output is 

largest

Classification: Mecobo



Classification results: in-materio compared with 
software search (CGP) – Maktuba et al. PPSN 2014
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Dataset

Mecobo 3.0 (digital)

Mecobo 3.5 (analogue)

Av. Training 

accuracy

(material)

Av. Testing 

accuracy

(material)

Av. Training 

accuracy

(CGP)

Av. Testing

accuracy

(CGP)

Lenses

• 24 instances

• 4 attributes

• 3 classes

• Training set 16

• Testing set 8

• Unbalanced

92.7% 65.8% 93.8% 68.3%

Iris

• 150 instances

• 4 attributes

• 3 classes

• Training set 75

• Testing set 75

• Balanced

84.7%

91.33%

77.1%

86.6%

97.7%

87.2%

98.0%

84.4%



• What materials should we use?

• How do the devices work?

• Scalability

– How does the EIM scale on harder problems? 

• Standalone computational devices

– Standalone algorithms?

– What speed can they operate at?

– What power do they consume?

• Can room temperature devices be built using gold 

nanoparticle arrays?

What is next?



Want to learn more about EIM?
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